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SUMMARY

The problem of teaching the principles of chromatography to undergraduate
students is greatly simplified by the use of the computer. The programs discussed
take real or imaginary data and calculate how the system should develop. The effect
of variation of chromatographic parameters is readily tested. Copies of the programs
written in Fortran IV are available from the author.

When training students, how far should one go beyond teaching the mechanics
of some actual separations? Without some understanding of chromatographic
principles, each separation becomes a magical rite, impossible to perform unless one
has been given the exact recipe. Yet, to most students in undergraduate laboratory
classes, a thorough presentation of the theory of chromatography would prove
formidable and rather useless. It is desirable for these students to have answers to
three basic questions about chromatography:

(A) Why do solutes move at different rates in a chromatographic system?

(B) How does a band of solute, initially very narrow, distribute during
development?

(C) What factors govern degree of separation of two bands?

The first question can be answered easily and in a variety of ways. However,
it is convenient to prepare for answering I3 and C by discussing A in terms of counter-
current distribution (CCD). The validity of this time-honored approach to the theory
of chromatography is well established!. Starting with two immiscible liquids in a
separatory funnel, these represent the two phases necessary for any chromatographic
system; one may add a solute, shake, and measure the concentration of solute in
each phase at equilibrium. The ratio of these concentratioris is the partition coefficient
() and the ratio of the amounts of solute in each phase is the distribution ratio (R).

- concn. in phase m
K = - n P (1)
concn. in phase s

amount in phase K Van

R = -
amount in phase s Vs

(2)

Where V,, = volume of phase ; Vs = volume of phase s.
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Students then recognize that for any solvent system different solutes will have
different partition coefficients. Next the concept that one phase moves while the
other remains stationary must be introduced. This can be illustrated by a row of
separatory funnels each containing the same amount of phase s. Phase m is then
transferred from the first funnel (tube 0) to the second (tube 1), and a new phase m is
added to the first funnel. Such an operation, called a transfer, is analogous to one
theoretical plate in more conventional chromatography. A continuous repetition of
this process shifts phase » along the row of funnels. The solute is carried along at a
lesser rate and at the same time spreads into an increasing number of funnels. The
solute becomes distributed in decreasing concentrations before and behind the funnel
of maximum concentration. This is typical of chromatographic separations.

The student must appreciate the following points: (1) Phase # is a moving
phase, while phase s is a stationary phase. (2) At each transfer some portion of the
solute is moved to higher numbered tubes. (3) The higher the partition coefficient, <.c.
the greater the relative solubility in moving phase, the larger the portion of solute
moving at each transfer will be. (4) A plot of concentration of solute wersus tube
number produces a peaked curve tapering out from a maximum point smoothly in
both directions. Thus, in conventional chromatography solute moves as a band
because; just as with CCD, equilibration between moving and stationary phase is
rapid relative to the movement of the phases. Solute moves at a fraction of the rate
of the moving phase, this fraction increasing with increasing K.

The advantage of using the CCD analogy is clear when attempting to answer
questions B and C. CCD lends itself readily to mathematical analysis producing
equations which are useful in teaching chromatographic principles. In the simplest
sense it is possible to have even mathematically unsophisticated students take
partition coefficients such as 1 or g, assume unit volumes of both stationary and mov-
ing phase, and calculate the transfer of one gram through several transfers (Table I).
However, to deal with realistic problems, especially to predict the behavior of a real
solute whose partition coefficient has been measured, requires the use of more
sophisticated calculations. Using the distribution ratio (Eqn. 2), the proportion of

TABLIETI
HAND CALCULATION OF THE DISTRIBUTION OF A COMPOUND WITH /X = 9 BY CCD

It is assumed that there is 1 g of solute and that equal volumes of each phase are present, The
calculation is simply to transfer go?%, of the solutc of cach tube, one tube ahead at each transfer,
and to leave 109, behind. This is shown clearly in the first transfer. In tube 1 after the second
transfer the o0.180 g arise from o.09o g being transferred in from tube o and o.090 g being left
behind when 9o9%, of tube 1 transfers to tube 2. Similary JX = 1 provides an easy hand calculation
since half the contents of each tube moves and half remains behind.

Transfer Tube number

number
o I 2 ‘ 3 4 5 6 7
o I.0
1 o.1 ' 0.9
2 0.0I o.180 0.810
3 0.001 0.027 0.243 0.729
4 ©0.0001 0.0036 0.0486 0.2916 0.6561
5 e 0.0005 0.0081 . ° 0,0729 0.3281 0.5905
6 —_ 0,0001 0.0012 0.0146 0.0984 0.3543 0.5314
7 R — 0.0002 0.0026 0.0230 0.1240 0.3720 0.4783

J. Chromaltogr., 6o (IQZI) 313—318




USE OF THE COMPUTER IN TEACHING THI THEORY OF CHROMATOGRAPHY 315

solute in moving phase a and in the stationary phase b can be calculated:

R
i 3
b= = I — (4)
T RYIC “ 4

The amount of compound C,,, in a specific tube X (distance in theoretical plates
along the column in conventional chromatography) after # transfers (total theoretical
plates in conventional chromatography) is calculated by the Pascal distribution
formula:

nlazb(n—=2)

Cu,x = (5)

xl(re — x)!
This calculation has been applied not only to CCD?2 but also to partition column?
and ion-exchange? chromatography. In order for students to gain a feeling for the effect
of changing the partition coefficient and varying the relative volumes of the phases
for various numbers of transfers a prohibitive number of calculations would be
required. Since it is the result and not the calculation that is important, a computer
program has been prepared allowing the student to select and test these variables
rapidly and easily. The output of the program is shown in Table II.

Question C concerns the separation of two solutes in a chromatographic
system. The variables are the partition coefficients of the two components (KX 4, Kp),
the volumes of stationary and moving phases (Vs, V), and the number of transfers 7.
If the distribution of solute concentration in a developing band is considered to be
well represented by a Gaussian curve, standard statistical approaches may then be
applied. In practice the actual distributions may not conform to this assumption,
but the use of the assumption is instructionally useful.

It is possible, given distribution coefficients and volumes of the two phases,
to calculate the number of transfers or theoretical plates required to resolve two
components. One must include also a criterion of what is meant by the resolution
¢.¢. how much band-overlap is acceptable. IFig. 1 illustrates the percentage of total
area under various portions of the curve, the X-distance being expressed in terms of
standard deviations ¢. If it is sufficient to collect a rich cut which contains 849, of
the desired component and can contain 16%, of the other peak as an impurity, it is
necessary only to have the intersection (point of maximum separation) of the two peaks
occur at a distance of one ¢ from the maximum of each peak. However, if it is desired
to have 99.98%, of one component and only 0.02%, of the other in the “rich cut’ it is
necessary to have the separation occur 3.5 o from each maximum. When discussing
the number of transfers or theoretical plates required to separate two peaks it is
necessary to indicate the degree of resolution, here expressed as the number of
standard deviations from peak to intersection, that is expected (see Table III).

The number of transfers (theoretical plates) required to achieve a desired degree
of resolution can be calculated by eqn. 6.

R} (R; + 1) 4 R (R, +I)]2 (6)
Ry, — R,

Where oov = number of standard deviations from center of the peak to the center
of band-overlap. R;,R, = The distribution coefficients of components 1 and 2.
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-

IFig. 1. The Gaussian curve.

TABLIZ Il

THE PERCENTAGE OF THE TOTAL AREA UNDER EACH PORTION OF THE CURVE

Deviation from peak Percentage of arca Designation on figure
0.0-0.5 10.15 A
0.5-I.0 14.08 B
1.0-1.5 9.10 C
1.5—2.0 ERES D
2,0~2.5 .65 I:
2.5-3.0 0.49 I¥
3.0-3.5 O. 11 —_
3.5—4.0 0,02 —

TABLLE 1V

PREDICTION OF THE NUMBER OF TRANSFERS (THEORETICAL PLATES) REQUIRED TO ACHIEVE THE
DEGREE OF SEPARATION INFERRED IN THE SECOND COLUMN ‘‘AREA IN RICH cuUT' GIVEN THE
PARTITION COEFFICIENTS FOR BOTH COMPONENTS IN THE SOLVENT SYSTEM AND THE VOLUMES
OF BOTH PHASES

The distribution coefficients and f valuec are also presented. Programs arc available from the
author,

c Area in vich cut No. transfers

0.5 69.15 6.7

1.0 84.13 27.1

.5 03.32 6r1.0

2.0 97.73 108.4

2.5 99.38 160..4

3.0 99.87 ‘ 244.0

3.5 99.98 332.1

4.0 99.99 433.8

The partition coefficient 4 = 2.20, the partition coefficient B =: 7.35, the volume mobile phase =
200.00, the volume stationary phase = 100.00, the distribution coefficient .4 == 4.40, the distribut-

ion cocfficient B == 14.70, 8 = 3.3.}.
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Once again the calculation is awkward, particularly if realistic values are used.
A computer program has been prepared for this calculation which allows students to
supply partition coefficients and phase volumes and learn the number of transfers
required to achieve various degrees of separation. The output is shown in Table IV.

It is worthwhile to establish the validity of calculations by a simple experi-
ment. The distribution of bromcresol purple between a lower phase of 29, KCl in
aqueous HCIl (pH 1.9) and an upper phase of #-butancl-ligroin (35:65) is convenient
because the distribution of the dye can be followed visually and can be conveniently
assayed in a colorimeter. Prepare the solvents beforehand and store them together to
allow each layer to saturate the other. Prepare a 0.0059, solution of bromcresol purple
in lower phase. Have students establish the absorptivity and the validity of Beer’s
law for dilutions of the dye in the lower phase. Read in a spectrophotometer at 430 mu
or in a filter photometer with an appropriate filter. Then in a separatory funnel place
measured volumes of the upper and lower phase, add a measured amount of dye
solution, and shake thoroughly. Withdraw some lower phase, read its absorbance
in the spectrophotometer, and from the Beer’s law curve calculate the concentration
in thelower phase. Calculate the total amount of dye in the lower phase and substract
this from the total amount added to give the amount in the upper phase. Then from
these values and the known volumes of upper and lower phases added, calculate
the partition coefficient (Eqn. 7). If the distribution is to be run in a Craig machine
assume upper phase to be moving phase, while if separatory funnels are to be used
assume lower phase to be the moving phase.

__ (amount in moving phase) (volume of stationary phase)
"~ (amount in stationary phase) (volume of moving phase)

(7)

The value obtained can vary with the exact composition of the solvents, but should
be reasonably close to I.

Using the computer program calculate the distribution of dye through fourteen
transfers given the K determined and the volumes of stationary and moving phase
to be used.

Finally, perform the distribution. If a Craig machine is not available, use either
fifteen separatory funnels or fifteen glass or teflon stoppered burets. Without a Craig
machine it is necessary to shake each vessel individually, and to transfer lower
phase beginning with the highest numbered tube and proceeding back to tube zero.
After the last transfer, shake all the vessels and remove the lower phase for assay
in the spectrophotometer. Knowing the concentration in the lower phase and the
distribution ratio (program output) the concentration in the upper. phase can be
calculated. IFrom this the total amount of dye in each vessel is determined and this is
plotted against the predicted values of the computer print out.
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