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THE USE 01; THE COIVIPUTER IN TEACHING THE THISORY 01’; 
CHROlVL4TOGRAPHY 

SUMMARY 

The problem of teaching the principles of chromatography to undergraduate 
students is greatly simplified by the use of the computer. The programs discussed 
take real or imaginary data and calculate how the system should develop. The effect 
of variation of chrornatographic parameters is readily tested. Copies of the programs 
written in Fortran IV are available from the author. 

When training students, how far should one go beyond teaching the mechanics 
of some actual separations? Without some understanding of chromatographic 
principles, each separation becomes a magical rite, impossible to perform unless one 
has been given the exact recipe. Yet, to most students in undergraduate laboratory 
classes, a thorou.gh presentation of the theory of chromatography would prove 
formidable and rather useless. It is desirable for these students to have answers to 
three basic questions about chromatography : 

(A) Why do solutes move at different rates in a chromatographic system? 
(B) How does a band of solute, initially very narrow, distribute during 

development? 
(C) What factors govern degree of separation of two bands? 
The first question can be answered easily and in a variety of ways. However, 

it is convenient to prepare for answering 13 and C by discussing A in terms of counter- 
current distribution (CCD). The validity of this time-honored approach to the theory 
of chromatography is well established l. Starting with two immiscible liquids in a 
separator-y funnel, these represent the two phases necessary for any chromatographic 
system ; one may add a solute, shake, and measure the concentration of solute in 
each phase at equilibrium. The ratio of these concentrations is the partition coefficient 
(I<) and the ratio of the amounts of solute in each phase is the distribution ratio (12). 

concn. in phase 11c I< = -___ 
concri. in phase s (I) 

R 
am.ount in phase ~12 ‘UL z- 
amount in phase s 

= I<; 
B 

Where V,,, ==: volume of phase 912; I/s = volume of phase s. 

(2) 
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Students then recognize that for any solvent s&em different solutes will have 
different partition coefficients. Next the concept that one phase moves while the 
other remains stationary must be introduced. This can be illustrated by a row of 
separatory funnels each containing the same amount of phase s. Phase wz is then 
transferred from the first funnel (tube o) to the second (tube I), and a new phase m is 
added to the first funnel. Such an operation, called a transfer, is analogous to one 
theoretical plate in more conventional chromatography. A continuous repetition of 
this process shifts phase m along the row of funnels. The solute is carried along at a 
lesser rate and at the same time spreads into an increasing number of funnels. The 
solute becomes distributed in decreasing concentrations before and behind the funnel 
of rnaximum concentration. This is typical of chromatographic separations. 

The student must appreciate the following points: (I) Phase m is a moving 
phase, while phase s is a stationary phase. (2) At each transfer some portion of the 
solute is moved to higher numbered tubes. (3) The higher the partition coefficient, i.e. 
the greater the relative solubility in moving phase, the Iarger the portion of solute 
moving at each transfer will be. (4) A plot of concentration of solute VCYWS tube 
number produces a peaked curve tapering out from a maximum point smoothly in 
both directions. Thus, in conventional chromatography solute moves as a band 
because, just as with CCD, equilibration between moving and stationary phase is 
rapid relative to the movement of the phases. Solute moves at a fraction of the rate 
of the moving phase, this fraction increasing with increasing K. 

The advantage of using the CCD analogy is clear when attempting to answer 
questions B and C. CCD lends itself readily to mathematical analysis producing 
equations which are useful in teaching chromatographic principles. In the simplest 
sknse it is possible to have even mathematically unsophisticated students take 
partition coefficients such as I or 9, assume unit volumes of both stationary and mov- 
ing phase, and calculate the transfer of one gram through several transfers (Table I). 
However, to deal with realistic problems, &specially to predict the behavior of a real 
solute whose partition coefficient has been measured, requires the use of more 
sophisticated calculations. Using the distribution ratio (Eqn. 2), the proportion of 

TABLE I 

HAND CALCULATION OF THE DISTRIBUTION OF A COMPOUND WITH /i’ = 9 BY CCD 

It is assumed that there is I 6 of solute and that equal volumes of each phase are present. The 
calculation is simply to transfer 90% of the solute of each tube, one tube ahead at each transfer, 
and to leave 10% behind. This is shown clearly in the first transfer. In tube I after the second 
transfer the 0.180 6 arise from 0.090 6 being transferred in from tube o and 0.090 6 being left 
behind when 90% of tube I transfers to tube 2. Similary I< = I provides an easy hand calculation 
since half the contents of each tube moves and half remains behind. 

Trnnsfer Tube wzcnalxw 
nunzbw 

0 I 2 3 4 5 G 7 

0 I.0 

I 0.1 0.9 
2 o.ot O.ISO 0.510 

: 
0.001 0.027 0.243 0.729 
0.0001 0.003G 0.0486 0.2910 o.Gy31 

_ 

2 
- 0.0005 0,OOSI 0.0729 0.32S1 0.5905 
- 0.0001 0.0012 0.014G 0.0984 O-3543 0.53 r4 

7 - - 0.0002 0.0026 0.0230 0.1240 0.3720 o*47s3 
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solute in moving phase n and in the stationary phase b can be calculated: 

The amount of compound C ,l,s in a specific tube X (distance in theoretical plates 
along the column in conventional cllromatograpliy) after 72. transfers (total tlieoretical 
plates in conventional chromatography) is calculated by the Pascal distribution 
formula : 

C 
,c ! &zb (frz--N) 

7G.5 = x!(n - x)! (5) 

This calculation has been applied not only to CCD2 but also to partition column3 
and ion-eschange4 chromatography. In order for students to gain a feeling for the effect 
of changing the partition coefficient and varying the relative volumes of the phases 
for various numbers of transfers a prohibitive number of calculations would be 
required. Since it is the result and not the calculation that is important, a computer 
program has been prepared allowing the student to select and test these variables 
rapidly and easily. The output of the program is shown in Table II. 

Question C concerns the separation of two solutes in a chrornatographic 
system. The variahlcs are the partition coefficients of the two components (KA, KB), 
the volumes of stationary and moving phases ( Vs, V,), and the number of transfers 32. 
If the distribution of solute concentration in a developing band is considered to be 
well represented by a Gaussian curve, standard statistical approaches may then be 
applied. In practice the actual distributions may not conform to this assumption, 
but the use of the assumption is instructionally useful. 

It is possible, given distribution coefficients and volumes of the two phases, 
to calculate the number of transfers or theoretical plates required to resolve two 
components. One must include also a criterion of what is meant by the resolution 
i.e. how much band-overlap is acceptable. Fig. I illustrates the percentage of total 
area under various portions of the curve, the S-distance being expressed in terms of 
standard deviations 6. If it is sufficient to collect a rich cut which contains S4% of 
the desired component and can contain IGO/ of the other peak as an impurity, it is 
necessary only to have the intersection (point of maximum separation) of the two peaks 
occur at a distance of one cr from the maximum of each peak. However, if it is desired 
to have gg,gS% of one component and only o.oz% of the other in the “rich cut” it is 
necessary to have the separation occur 3.5 r~ from each .maximum. When discussing 
the number of transfers or theoretical plates required to separate two peaks it is 
necessary to indicate the degree of resolution, here espressed as the number of 
standard deviations from peak to intersection, that is expected (see Table III). 

The number of transfers (theoretical plates) required to achieve a clesired degree 
of resolution can be calculated by eqn. 6. 

75 Z’ cTov 

[ 
ha(% + I) ‘t-’ R&R, +I) 2 - 

- X2 - R, 1 (6) 

Where aov = number of standard deviations from center of the peak to the center 
of band-overlap, R,,R, =f The distribution coefficients of components I and 2; 
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DISPLACEMENT ON COLUMN (STD. DEVIATIONS) 

I:ig. I. Ih.2 Gaussian curve. 

THE I’lERClISTAGIS OF THE TOTAL AREA UNDXR EACH PORTION 01’ THE CURVE 

0.0-0.5 

O._+I .o 
r-o-I.5 

T ._+-2.0 

2.04.5 

2.5-3.0 
i-3*0-3*5 
3.5-4.0 

I’RISI~ICTIOX 01: TIIE NUhl1315R Olp TRANSl~lfIiS (‘Tl~IISOI<ISTICAL PLATES) REQUIRED TO ACHII~VE THE 

DRGREIE OF SEPAR~\TIOS INI:ERRI,~l3 IN THIS SECOND CGLUMN “AREA IN RICH CUT” GIVEN THE 

PARTITION COEI’I~ICIIENTS I’OR HOT11 COMI’OXISX’I’S IN THE scxwxm swmn1 ASII) *rnx vor_un~I:,s 
OP 1307.~I PHASES 

‘1’1~~ clistril,ution cocflicicnts and /r ~nluc m-c also prcscntctl. Programs arc available from the 
author. 
_--- _.__. -..-.~ ._----- ._-- ____ ---.._ 
d nrwz irt ridi crrt No. f /‘czIESf~!I’S 

6.7 
27.1 
GJ .o 

108.-f 

169.&t 

244.0 

332.1 
433.5 

The partition cocJlicicnt A - 2.20, tlic p:krtition cocl’licic~it J3 =L: 7.35, tlic ~011lmc niobilc plinsc f= 
200.00, tlic \*olunic stationary phaw = x00.00, tlic distribution coc!ficient A =t 4.40, the clistribut- 
ion cocfficicnt J3 = r4,70, ,8 f= 3-34. 

J. C/i~orrtatogI*. , 60 (1971) 313-31s 
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Once again the calculation is awkward, particularly if realistic values are used. 
A computer program has been prepared for this calculation which allows students to 
supply partition coefficients and phase volumes and learn the number of transfers 
required to achieve various degrees of separation. The output is shown in Table IV. 

It is worthwhile to establish the validity of calculations by a simple experi- 
ment. The distribution of bromcresol purple between a lower phase of 2% KC1 in 
aqueous HCl (pH 1.9) and an upper phase of ut-butanol-ligroin (35 :G5) is convenient 
because the distribution of the dye can be followed visually and can be conveniently 
assayed in a calorimeter. Prepare the solvents beforehand and store them together to 
allow each layer to saturate the other. Prepare a o.~pg~/~ solution of bromcresol purple 
in lower phase. Have students establish the absorptivity and the validity of Beer’s 
law for dilutions of the dye in the lower phase. Read in a spectrophotometer at 430 rnp 
or in a filter photometer with an appropriate filter. Then in a separatory funnel place 
measured volumes of the upper and lower phase, add a measured amount of dye 
solution, and shake thoroughly. Withdraw some lower phase, read its absorbance 
in the spectrophotometer, and from the Beer’s law curve calculate the concentration 
in the lower phase. Calculate the total amount of dye in the lower phase and substract 
this from the total amount added to give the amount in the upper phase. Then from 
these values and the known volumes of upper and lower phases added, calculate 
the partition coefficient (Eqn. 7). If the distribution is to be run in a Craig machine 
assume upper phase to be moving phase, while if separatory funnels are to be used 
assume lower phase to be the moving phase. 

K= 
(amount in moving phase) (volume of stationary phase) 
(amount in stationary phase) (volume of moving phase) (7) 

The value obtained can vary with the exact composition of the solvents, but should 
be reasonably close to I. 

Using the computer program calculate the distribution of dye through fourteen 
transfers given the I< determined and the volumes of stationary and moving phase 
to be used. 

Finally, perform the distribution. If a Craig machine is not available, use either 
fifteen separatory funnels or fifteen glass or teflon stoppered burets. Without a Craig 
machine it is necessary to shake each vessel individually, and to transfer lower 
phase beginning with the highest numbered tube and proceeding back to tube zero. 
After the last transfer, shake all the vessels and remove the lower phase for assay 
in the spectrophotometer. Knowing the concentration in the lower phase and the 
distribution ratio (program output) the concentration in the upper phase can be 
calculated. From this the total amount of dye in each vessel is determined and this is 
plotted against the predicted values of the computer print out. 
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